INESS mesc-is 2023

Matching Electrochemical Properties and Phase Transformations in NASICON-type Electrode Materials for Na-ion batteries

Zakharkin M.V.¹, Buryak N.S.¹, Dyakonov A. K.¹, Alyoshin S.A.¹, Perfilyeva T.I.¹, Drozhzhin O.A.¹, Stevenson K.J.¹, Antipov E.V.^{1,2}

¹ Lomonosov Moscow State University, 1/3 Leninskie gory, Moscow, 119991, Russia

Lonionosov Woscow State Oniversity, 1/5 Lenniskie gory, Woscow, 11/9/1, Russia

² Skolkovo Institute of Science and Technology, 3 Nobel St, Moscow, 121205, Russia

NASICON-type $Na_3V_2(PO_4)_3$ cathode materials are considered as promising candidates for high-performance Naion batteries due to extremely long cyclic stability and an outstanding ability to operate at high (dis)charge rates. However, its cost-effectiveness can still be improved using transition metals cheaper than vanadium, which could also increase the energy density compared to that in $Na_3V_2(PO_4)_3$.

The replacement of V with Mn and Cr in $Na_3V_2(PO_4)_3$ lowers the cost of the materials and enhances the operation voltage. Substitution of V by electrochemically inactive Mg and Sc allows studying vanadium redox processes without contributions from these metals (Figure 1).

Figure 1 Comparison of galvanostatic charge curves of NASICON compounds with different composition.

When the voltage window above 3.8 V is utilized, Mn^{2+} substitution enhances the energy density of $Na_{3+x}Mn_xV_{2-x}(PO_4)_3$ compounds for up to 10% compared with the $Na_3V_2(PO_4)_3$. The evolution of the transition metal oxidation states in $Na_4MnV(PO_4)_3$ during charge and discharge was studied by X-ray absorption spectroscopy (XAS) in *ex situ* and *operando* regimes using an electrochemical cell with X-ray transparent windows.

In order to link electrochemical features with the phase transformations in NASICON samples *operando* X-ray powder diffraction was carried out (Figure 2). The crystal structure changes on charge and discharge were studied as

well as the electrode performance in narrow (2.5-3.8 V), wide (2.5-4.5 V) and extra wide (1.0-4.5 V) potential windows.

 $\begin{array}{l} \mbox{Figure 2 Schematic illustration of the Na^{+} deintercalation} \\ \mbox{regimes from $Na_{3+x}Mn_xV_{2-x}(PO_4)_3$ ($0{\leq}x{\leq}1$). \\ \end{array}$

The results indicate that in case of narrow voltage window the Na⁺ (de)intercalation reaction is reversible, however for the V-substituted compounds charging above 3.8 V increases energy density, but leads to the loss of reversibility and capacity fade. However, for some compounds an overdischarge below 2.5 V suppresses the capacity fade [1].

The experimental results indicate the benefits of vanadiumsubstituted compounds and ability to outperform the unsubstituted materials in terms of rate-capability. Therefore they should be preferred for high-power applications.

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 17-73-30006-P).

References

[1] Perfilyeva, T.I., Drozhzhin, O.A., Alekseeva, A.M., Zakharkin, M.V., Mironov, A.V., Mikheev, I.V., Bobyleva, Z.V., Marenko, A.P., Marikutsa, A.V., Abakumov, A.M., Antipov, E.V. // Journal of The Electrochemical Society 2021, 168, p.110550

Dr. Maxim Zakharkin is a research scientist at Lomonosov Moscow State University. He obtained his PhD in Materials Science from Skolkovo Institute of Science and Technology and MSc in Electronics and Nanoelectronics from Saint-Petersburg State Polytechnical University. His research mainly covers the synthesis and characterization of electrode materials for sodium-ion batteries.

Presentating author: Maxim Zakharkin, e-mail: maxim@elch.chem.msu.ru